	Questic	on	Answer	Marks		Guidance
1	(i)		Mean $=$ $\frac{59972}{40} = 1499$ Condone full answer of 1499.3 (despite over-specification rule)	B1	CAO Ignore units	NB Allow 1500 NB Answer must be decimal
			$Sxx = 96767028 - \frac{59972^2}{40} = 6851008$	M1	For Sxx	M1 for 96767028 - $40 \times$ their mean ² BUT NOTE M0 if their $S_{xx} < 0$
			$s = \sqrt{\frac{6851008}{39}} = \sqrt{175667} = 419$ NB Full answer is 419. 1263 (but only allow to 4sf due to over-specification rule)	A1 [3]	CAO ignore units	For s ² of 176000 (or better) allow M1A0 with or without working For RMSD of 414 (or better) allow M1A0 provided working seen For RMSD ² of 171000 (or better) allow M1A0 provided working seen For use of 1499: $Sxx = 6886988, s^2 = 176589, s =$ 420.225, RMSD = 414.9 For use of 1500: $Sxx = 6767028, s^2 = 173513.5, s =$ 416.549, RMSD = 411.3 Give same credit to answers as for correct answers
1	(ii)		New mean = $(0.163 \times 1499) + 14.5 = \pounds 258.84$ (No penalty for giving to 5sf as this is an exact sum of money) New sd = 0.163×419 = $\pounds 68.30$	B1 M1	FT their mean provided answer is positive FT their sd for M1 and A1 Allow £68.29 to	If candidate 'starts again' only award marks for CAO Allow £259 or £259.00 from 1500 or £258.89 from 1499.3 Condone 258.8 and 258.9 Accept answers rounded to 3 sf or more eg £258.80, £258.90 Or for 0.163×419.1 oe Do not penalise lack of units in mean
			- 200.50	A1 [3]	£68.32 Allow 68.3	or sd Deduct at most 1 mark overall in whole question for over-specification of either mean or SD or both

2	(i)		$P(X=6) = 1 - P(X < 6) = 1 - \left(\frac{5}{6}\right)^3 = 1 - \frac{125}{216}$	M1	For $\left(\frac{5}{6}\right)^3$	
				M1	For $1 - \left(\frac{5}{6}\right)^3$	
			$=\frac{91}{216}$	A1	NB ANSWER GIVEN	
				[3]		
			$\mathbf{OR:} = \left(\frac{1}{6}\right)^3 + 3 \times \left(\frac{5}{6}\right) \times \left(\frac{1}{6}\right)^2 + 3 \times \left(\frac{5}{6}\right)^2 \times \left(\frac{1}{6}\right)$	M1	For second or third product term	Correct, including ×3 or probabilities seen on correct tree diagram
				M1	For attempt at three terms	With no extras, but allow omission of $\times 3$
			$=\frac{91}{216}$	A1	NB ANSWER GIVEN	NB Zero for 1 – (sum of probs given in part (ii))
			OR : 1 + 15 + 75	M1	for 15 or 75 seen	
			$=\frac{1+15+75}{216}$	M1		

		$=\frac{91}{216}$	A1	NB ANSWER GIVEN	
2	(ii)	$E(X) = \begin{pmatrix} 1 \times \frac{1}{216} \end{pmatrix} + \begin{pmatrix} 2 \times \frac{7}{216} \end{pmatrix} + \begin{pmatrix} 3 \times \frac{19}{216} \end{pmatrix} + \begin{pmatrix} \times \frac{37}{216} \end{pmatrix} + \begin{pmatrix} \times \frac{61}{216} \end{pmatrix} + \begin{pmatrix} \times \frac{91}{216} \end{pmatrix}$	M1	For Σrp (at least 3 terms correct)	
		$= \frac{1071}{216} = \frac{119}{24} = 4.96 (\text{exact answer } 4.9583333)$ $E(X^2) =$	A1	CAO	Accept fractional answers Do not allow answer of 5 unless more accurate answer given first Use of $E(X-\mu)^2$ gets M1 for attempt at
		$\left(1 \times \frac{1}{216}\right) + \left(4 \times \frac{7}{216}\right) + \left(9 \times \frac{19}{216}\right) + \left(16 \times \frac{37}{216}\right) + \left(25 \times \frac{61}{216}\right) + \left(36 \times \frac{91}{216}\right)$	M1*	For $\Sigma r^2 p$ (at least 3 terms correct)	(x- μ) ² should see (-3.96) ² , (-2.96) ² , (- 1.96) ² , (-0.96) ² 0.04 ² , 1.04 ² , (if E(X) wrong FT their E(X)) (all 6 correct for M1), then M1 for $\Sigma p(x-\mu)^2$ (at least 3 terms correct) Division by 6 or other spurious value at end and/or rooting final answer gives max M1A1M1M1A0, or M1A0M1M1A0 if E(X) also divided by 6.
		$= \frac{5593}{216} = 25.89$ Var(X) = 25.89 4.958 ² = 1.31 Accept answers in range 1.28 to 1.31 with correct working or 2261/1728	M1* dep	for – their (E(X)) ²	Do not FT $E(X) = 5$ if full marks given for $E(X)$
		(Exact answer 1.308449)	A1 [5]	FT their E(X) provided Var(X) > 0	Deduct at most 1 mark for over- specification of either mean or variance or both Unsupported correct answers get 5 marks (Probably from calculator)

Question	Answer	Marks	Guidance		
(i)	k + 0.01 + k + 0.04 + k + 0.09 + k + 0.16 + k + 0.25 = 1	M1	For equation in k		
	5k + 0.55 = 1 k = 0.09	A1	NB Answer Given	Allow substitution of $k = 0.09$ to show probabilities add to 1 with convincing working	
	r 1 2 3 4 5 $P(X=r)$ 0.1 0.13 0.18 0.25 0.34	B1	Complete correct table	Must tabulate probabilities, though may be seen in part(ii)	
		[3]			
(ii)	$E(X) = (1 \times 0.1) + (2 \times 0.13) + (3 \times 0.18) + (4 \times 0.25) + (5 \times 0.34)$	M1	correct Provided 5 reasonable probabilities	If probs wrong but sum = 1 allow max M1A0M1M1A1. If sum \neq 1 allow max M1A0M1M0A0 (provided all	
	= 3.6 E(X^2) = (1×0.1)+(4×0.13)+(9×0.18)+(16×0.25)+(25×0.34)=14.74	A1		probabilities ≥ 0 and <1)	
		M1*	For $\Sigma r^2 p$ (at least 3 terms correct)	No marks if all probs =0.2	
	$Var(X) = 14.74 - 3.6^2$	M1* dep	for – their $(E[X])^2$ FT their $E(X)$ provided Var $(X) > 0$	Use of $E(X-\mu)^2$ gets M1 for attempt at $(x-\mu)^2$ should see (- 2.6) ² , (-1.6) ² , (-0.6) ² , 0.4 ² , 1.4 ² , (if $E(X)$ wrong FT their $E(X)$)	
	= 1.78	A1	САО	(all 5 correct for M1), then M1 for $\Sigma p(x-\mu)^2$ (at least 3 terms correct with their probabilities) Division by 5 or other spurious value at end and/or rooting final answer gives max M1A1M1M1A0, or M1A0M1M1A0 if E(X) also divided by 5. Unsupported correct answers get 5 marks (Probably from calculator)	
	(ii)	(ii) $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(ii) $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	k = 0.09 A1 NB Answer Given $\overline{P(X=r)}$ $\overline{0.1}$ $\overline{0.3}$ B1 Complete correct table (ii) $E(X) = (1 \times 0.1) + (2 \times 0.13) + (3 \times 0.18) + (4 \times 0.25) + (5 \times 0.34)$ M1 For Σrp (at least 3 terms correct Provided 5 $= 3.6$ $E(X^2) = (1 \times 0.1) + (2 \times 0.13) + (3 \times 0.18) + (4 \times 0.25) + (5 \times 0.34)$ M1 CAO $= 3.6$ $E(X^2) = (1 \times 0.13) + (9 \times 0.18) + (16 \times 0.25) + (25 \times 0.34) = 14.74$ M1* CAO $Var(X) = 14.74 - 3.6^2$ $M1^*$ For $\Sigma r^2 p$ (at least 3 terms correct) for - their ($E[X])^2$ $= 1.78$ A1 CAO A1 CAO	

4	(i)	r $P(X = r)$	2 k	8k	15k	24 <i>k</i>]	B1	For correct table (ito <i>k</i> or correct probabilities 0.06, 0.16, 0.30, 0.48)	
		3k + 8k + 1 $k = 0.02$	5 <i>k</i> + 24 <i>k</i> =	- 1				M1 A1 [3]	or $k = 1/50$ (with or without working)	For their four multiples of <i>k</i> added and =1. Allow M1A1 even if done in part (ii) - link part (ii) to part (i)

4	(ii)	E(X) = $(2 \times 0.06) + (3 \times 0.16) + (4 \times 0.30) + (5 \times 0.48) = 4.2$ or 21/5	M1 A1	For Σrp (at least 3 terms correct Provided 4 reasonable probabilities seen. cao	If probs wrong but sum = 1 allow full marks here. If sum \neq 1 allow max M1A0M1 M0A0 (provided all probabilities between 0 and 1) Or ito k NB E(X) = 210k, E(X ²) = 924k gets
					M1A0M1M0A0. $E(X) = 210k$, Var $(X) = 924k - (210k)^2$ gets M1A0M1M1A0.
		$E(X^{2}) = (4 \times 0.06) + (9 \times 0.16) + (16 \times 0.30) + (25 \times 0.48) = 18.48$	M1	Fo $\Sigma r^2 p$ (at least 3 terms correct)	
		$Var(X) = 18.48 - 4.2^2$	M1	dep for – their $E(X)^2$	
		= 0.84 = 21/25	A1	FT their $E(X)$ provided Var(X) > 0 (and of course $E(X^2)$ is correct)	Use of $E(X - \mu)^2$ gets M1 for attempt at $(x - \mu)^2$ should see $(-2.2)^2$, $(-1.2)^2$, $(-0.2)^2$, 0.8^2 , (if $E(X)$ wrong FT their E(X)) (all 4 correct for M1), then M1 for $\Sigma p(x - \mu)^2$ (at least 3 terms correct with their probabilities) Division by 4 or other spurious value at end gives max M1A1M1M1A0, or M1A0M1M1A0 if $E(X)$ also divided by 4. Unsupported correct answers get 5 marks
			[5]		

C	Question	Answer	Marks	Guidance
5	(i)	$P(X = 0) = 0.4 \times 0.5^{4} = 0.025$ <u>NB ANSWER GIVEN</u> $P(X = 1) = (0.6 \times 0.5^{4}) \times (4 \times 0.4 \times 0.5 \times 0.5^{3})$	M1 A1 [2]	For 0.5^4
	(ii)	$P(X = 1) = (0.6 \times 0.5^{4}) + (4 \times 0.4 \times 0.5 \times 0.5^{3})$ $= 0.0375 + 0.1 = 0.1375 $ <u>NB ANSWER GIVEN</u>	M1* M1* M1* dep A1 [4]	For 0.6×0.5^4 seen as a single term (not multiplied or divided by anything) For $4 \times 0.4 \times 0.5^4$ Allow 4×0.025 Watch out for incorrect methods such as (0.4/4) 0.1 <u>MUST</u> be justified For sum of both , dep on both M1's
	(iii)	$\begin{bmatrix} 0.35 \\ 0.3 \\ 0.25 \\ 0.1 \\ 0.15 \\ 0 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 5 \\ 7 \\ \end{bmatrix}$	G1 G1	For labelled linear scales on both axes Dep on attempt at vertical line chart. Accept P on vertical axis For heights – visual check only but last bar taller than first and fifth taller than second and fourth taller than third. Lines must be thin (gap width > line width). All correct. Zero if vertical scale not linear Everything correct but joined up tops G0G1 MAX Everything correct but f poly G0G1 MAX Everything correct but bar chart G0G1 MAX Curve only (no vertical lines) gets G0G0 Best fit line G0G0 Allow transposed diagram
			[2]	

C	Question	Answer	Marks	Guidance
5	(iv)	'Negative' or 'very slight negative'	E1 [1]	E0 for symmetrical but E1 for (very slight) negative skewness even if also mention symmetrical Ignore any reference to unimodal
	(v)	$E(X) = (0 \times 0.025) + (1 \times 0.1375) + (2 \times 0.3) + (3 \times 0.325) + (4 \times 0.175) + (5 \times 0.0375) = 2.6$	M1 A1	For Σrp (at least 3 terms correct) CAO
		$E(X^{2}) = (0 \times 0.025) + (1 \times 0.1375) + (4 \times 0.3) + (9 \times 0.325) + 16 \times 0.175) + (25 \times 0.075) = 0 + 0.1375 + 1.2 + 2.925 + 2.8 + 0.9375 = 8$	M1*	For $\Sigma r^2 p$ (at least 3 terms correct)
		Var $(X) = 8 - 2.6^2$	M1* dep	for – their E(X) ²
		= 1.24	A1 [5]	FT their E(X) provided Var(X) > 0 USE of E(X- μ) ² gets M1 for attempt at $(x-\mu)^2$ should see (- 2.6) ² , (-1.6) ² , (-0.6) ² , 0.4 ² , 1.4 ² , 2.4 ² (if E(X) correct but FT their E(X)) (all 5 correct for M1), then M1 for $\Sigma p(x-\mu)^2$ (at least 3 terms correct) Division by 5 or other spurious value at end gives max M1A1M1M1A0, or M1A0M1M1A0 if E(X) also divided by 5. Unsupported correct answers get 5 marks.
	(vi)	$\begin{array}{l} P(\text{Total of } 3) = (3 \times 0.325 \times 0.025^2) + (6 \times 0.3 \times 0.1375 \times 0.025) + \\ 0.1375^3 = 3 \times 0.000203 + 6 \times 0.001031 + 0.002600 = \\ 0.000609 + 0.006188 + 0.002600 = 0.00940 \\ (= 3 \times 13/64000 + 6 \times 33/32000 + 1331/512000) \end{array}$	M1 M1 M1 A1 [4]	For decimal part of first term 0.325×0.025^2 For decimal part of second term $0.3 \times 0.1375 \times 0.025$ For third term – ignore extra coefficient All M marks above depend on triple probability products CAO: AWRT 0.0094. Allow 0.009 with working.