Question		Answer	Marks		Guidance
1	(i)	$\text { Mean }=\frac{59972}{40}=1499$ Condone full answer of 1499.3 (despite over-specification rule) $\begin{aligned} & S_{X X}=96767028-\frac{59972^{2}}{40}=6851008 \\ & \mathrm{~s}=\sqrt{\frac{6851008}{39}}=\sqrt{175667}=419 \end{aligned}$ NB Full answer is 419. 1263 (but only allow to 4sf due to overspecification rule)	B1 M1 A1 [3]	CAO Ignore units For Sxx CAO ignore units	NB Allow 1500 NB Answer must be decimal M1 for 96767028-40 \times their mean 2 BUT NOTE M0 if their $S_{x x}<0$ For s^{2} of 176000 (or better) allow M1A0 with or without working For RMSD of 414 (or better) allow M1A0 provided working seen For RMSD ${ }^{2}$ of 171000 (or better) allow M1A0 provided working seen For use of 1499: $\begin{aligned} & \text { Sxx }=6886988, s^{2}=176589, s= \\ & 420.225, \text { RMSD }=414.9 \\ & \text { For use of } 1500: \\ & \text { Sxx }=6767028, s^{2}=173513.5, s= \\ & 416.549, \text { RMSD }=411.3 \end{aligned}$ Give same credit to answers as for correct answers
1	(ii)	New mean $=(0.163 \times 1499)+14.5=£ 258.84$ (No penalty for giving to 5 sf as this is an exact sum of money) New sd $=0.163 \times 419$ $=£ 68.30$	B1 M1 A1 [3]	FT their mean provided answer is positive FT their sd for M1 and A1 Allow $£ 68.29$ to £68.32 Allow 68.3	If candidate 'starts again' only award marks for CAO Allow $£ 259$ or $£ 259.00$ from 1500 or £258.89 from 1499.3 Condone 258.8 and 258.9 Accept answers rounded to 3 sf or more eg $£ 258.80$, $£ 258.90$ Or for 0.163×419.1 oe Do not penalise lack of units in mean or sd Deduct at most 1 mark overall in whole question for over-specification of either mean or SD or both

PhysicsAndMathsTutor.com

2	(i)	$\mathrm{P}(X=6)=1-\mathrm{P}(X<6)=1-\left(\frac{5}{6}\right)^{3}=1-\frac{125}{216}$ $=\frac{91}{216}$	M1 M1 A1 [3]	For $\left(\frac{5}{6}\right)^{3}$ For $1-\left(\frac{5}{6}\right)^{3}$ NB ANSWER GIVEN	
		$\text { OR: }=\left(\frac{1}{6}\right)^{3}+3 \times\left(\frac{5}{6}\right) \times\left(\frac{1}{6}\right)^{2}+3 \times\left(\frac{5}{6}\right)^{2} \times\left(\frac{1}{6}\right)$ $=\frac{91}{216}$	M1 M1 A1	For second or third product term For attempt at three terms NB ANSWER GIVEN	Correct, including $\times 3$ or probabilities seen on correct tree diagram With no extras, but allow omission of $\times 3$ NB Zero for 1 - (sum of probs given in part (ii))
		$\begin{aligned} & \text { OR: } 1+15+75 \\ & =\frac{1+15+75}{216} \end{aligned}$	$\begin{aligned} & \text { M1 } \\ & \text { M1 } \end{aligned}$	for 15 or 75 seen	

PhysicsAndMathsTutor.com

4	(i)						B1	For correct table (ito k or correct probabilities 0.06, $0.16,0.30,0.48)$	For their four multiples of k added and $=1$. Allow M1A1 even if done in part (ii) - link part (ii) to part (i)
		r	2						
		$\mathrm{P}(X=r)$	k	$8 k$	15k	$24 k$			
		$3 k+8 k+15 k+24 k=1$					M1		
		$k=0.02$					A1	or $k=1 / 50$ (with or without working)	
							[3]		

Question		Answer	Marks	Guidance
5	(i)	$\mathrm{P}(X=0)=0.4 \times 0.5^{4}=0.025 \quad$ NB ANSWER GIVEN	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & {[2]} \end{aligned}$	For $0.5{ }^{4}$
	(ii)	$\begin{aligned} & \mathrm{P}(X=1)=\left(0.6 \times 0.5^{4}\right)+\left(4 \times 0.4 \times 0.5 \times 0.5^{3}\right) \\ & =0.0375+0.1=0.1375 \quad \text { NB ANSWER GIVEN } \end{aligned}$	$\begin{gathered} \text { M1* } \\ \text { M1* } \\ \\ \text { M1* } \\ \text { dep } \\ \text { A1 } \\ {[4]} \\ \hline \end{gathered}$	For 0.6×0.5^{4} seen as a single term (not multiplied or divided by anything) For $4 \times 0.4 \times 0.5^{4}$ Allow 4×0.025 Watch out for incorrect methods such as (0.4/4) 0.1 MUST be justified For sum of both, dep on both M1's
	(iii)		G1 G1 [2]	For labelled linear scales on both axes Dep on attempt at vertical line chart. Accept P on vertical axis For heights - visual check only but last bar taller than first and fifth taller than second and fourth taller than third. Lines must be thin (gap width > line width). All correct. Zero if vertical scale not linear Everything correct but joined up tops G0G1 MAX Everything correct but f poly G0G1 MAX Everything correct but bar chart G0G1 MAX Curve only (no vertical lines) gets G0G0 Best fit line G0G0 Allow transposed diagram

Question		Answer	Marks	Guidance
5	(iv)	'Negative' or 'very slight negative’	$\begin{aligned} & \text { E1 } \\ & \text { [1] } \end{aligned}$	E0 for symmetrical but E1 for (very slight) negative skewness even if also mention symmetrical Ignore any reference to unimodal
	(v)	$\begin{aligned} & \mathrm{E}(X)=(0 \times 0.025)+(1 \times 0.1375)+(2 \times 0.3)+(3 \times 0.325)+(4 \times 0.175) \\ & +(5 \times 0.0375) \\ & \quad=2.6 \\ & \left.\mathrm{E}\left(X^{2}\right)=(0 \times 0.025)+(1 \times 0.1375)+(4 \times 0.3)+(9 \times 0.325)+16 \times 0.175\right) \\ & +(25 \times 0.075)=0+0.1375+1.2+2.925+2.8+0.9375=8 \\ & \operatorname{Var}(X)=8-2.6^{2} \\ & \quad=1.24 \end{aligned}$	$\begin{gathered} \text { M1 } \\ \text { A1 } \\ \text { M1* } \\ \text { M1* } \\ \text { dep } \\ \text { A1 } \\ {[5]} \end{gathered}$	For $\Sigma r p$ (at least 3 terms correct) CAO For $\Sigma r^{2} p$ (at least 3 terms correct) for - their $E(X))^{2}$ FT their $\mathrm{E}(\mathrm{X})$ provided $\operatorname{Var}(\mathrm{X})>0$ USE of $\mathrm{E}(X-\mu)^{2}$ gets M1 for attempt at $(x-\mu)^{2}$ should see (-$2.6)^{2},(-1.6)^{2},(-0.6)^{2}, 0.4^{2}, 1.4^{2}, 2.4^{2}$ (if $\mathrm{E}(X)$ correct but FT their $\mathrm{E}(X)$) (all 5 correct for M1), then M1 for $\Sigma \mathrm{p}(x-\mu)^{2}$ (at least 3 terms correct) Division by 5 or other spurious value at end gives max M1A1M1M1A0, or M1A0M1M1A0 if $\mathrm{E}(X)$ also divided by 5. Unsupported correct answers get 5 marks.
	(vi)	$\begin{aligned} & \mathrm{P}(\text { Total of } 3)=\left(3 \times 0.325 \times 0.025^{2}\right)+(6 \times 0.3 \times 0.1375 \times 0.025)+ \\ & 0.1375^{3}=3 \times 0.000203+6 \times 0.001031+0.002600= \\ & 0.000609+0.006188+0.002600=0.00940 \\ & (=3 \times 13 / 64000+6 \times 33 / 32000+1331 / 512000) \end{aligned}$	M1 M1 M1 A1 [4]	For decimal part of first term 0.325×0.025^{2} For decimal part of second term $0.3 \times 0.1375 \times 0.025$ For third term - ignore extra coefficient All M marks above depend on triple probability products CAO: AWRT 0.0094 . Allow 0.009 with working.

